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1 Introduction

This article continues the series of reviews on the synthesis of
organic halides previously published in Contemporary Organic
Synthesis and Perkin Transactions 1.1 The aim is to present
important new and topical methods for the preparation of
organic halides, in particular those which have advantages over
existing methods, either in terms of yield, selectivity or practi-
cality. The same format from previous reviews has been
retained, and will follow the different types of organic halide
laid out above. The importance of organofluorine compounds
has again been evident this year. A review on the chemistry of
glycosyl fluorides has been published.2 Several new reagents
and intermediates have also been reported this year. Caesium
fluoroxysulfate has been used to convert primary alcohols
to acyl fluorides,3 and 2-fluorobut-2-en-4-olide 1 has been
presented as a new fluorinated synthon. 4,4-Dibromo-3-methyl-
pyrazol-5-one 2 has been utilised in the selective monobromin-
ation of phenols,4 and 1-(p-tolylsulfonyloxy)-1,2-benziodoxol-
3(1H)-one 3 has been used in the selective iodination of
benzene rings.5

2 Alkyl halides

2.1 By halogenation of alkanes and alkenes

Relatively few reactions on the halogenation of alkenes have
been reported this year, so these two sections have been com-
bined. Liguori et al. have reported a direct homolytic iodination
reaction of alkanes by perfluoroalkyl iodides.6 During the syn-
thesis of (1)-8-deoxyvenolepin, Astudillo et al. used iodosyl-
benzene to functionalise a methyl group (Scheme 1).7 A novel,
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direct route to 2-deoxy-2-fluoroaldoses and derivatives has been
described using the SelectFluorTM reagent.8 Patrick and Zhang
have used xenon difluoride to promote a deiodinative fluorin-
ation reaction (Scheme 2).9 The reaction proceeded with loss of
iodine, cyclisation and incorporation of fluorine. Novel types
of liquid crystal based on axially fluorinated cyclohexane units
have been reported.10 Tyrell and co-workers have used Nicholas
carbocation methodology in a diastereoselective synthesis of
benzopyrans.11 Kobayashi and Miki have published a synthesis
of norbornadiene fused heterocycles which includes bromin-
ation reactions to give methanopuinoxaline derivatives.12

Paquette has used a bromination–destannylation procedure
during the total synthesis of spinosyn A.13 Bailey and Carson
have shown that phenyllithium can be used in catalytic amounts
to facilitate the cycloisomerisation of 6-iodohex-1-enes to
cyclopentanes.14 Gionotti et al. have reported a one pot syn-
thesis of 5-iodomethylisoxazolidines (Scheme 3).15 Trimethyl-
silyl trifluoromethanesulfonate promoted addition of allyl
stannane to aldonitrones was followed by cyclisation onto the
alkene. The formation of dihydrofurans from 1,3-dicarbonyl
compounds has been reported.16 The iodine promoted cyclo-
functionalisation gave the desired compounds in good yields
and under mild conditions (Scheme 4). Liu and Sun have
described the total synthesis of (±)-dehydrochamaecynenol.17

The key step was the polyene cyclisation promoted by the cross
conjugated α-alkoxycarbonyl enone system (Scheme 5). The
synthesis of pyrrolidones has been achieved by a triethylborane
mediated atom transfer cyclisation (Scheme 6).16 During the
synthesis of (1)-epoxydictymene, Paquette and co-workers
employed a stereoselective hydrobromination reaction (Scheme
7).19
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2.2 By nucleophilic substitution

The use of DAST to transform hydroxy groups to fluorides
remains a popular procedure. Two examples are the synthesis of
protected proline derivatives from the corresponding alcohols 20

(Scheme 8) and the production of fluorinated analogues of
polyunsaturated fatty acids (Scheme 9).21 A new preparative
route to organic halides from alcohols via the reduction of
polyhalomethanes has been reported.22 Ceccherelli et al. have
converted oximes to gem-chloro-nitro derivatives in a one step
process (Scheme 10).23 The preparation of chloromethylphenyl
solid supports has been achieved by taking the commercially
available alcohol and reacting with methanesulfonyl chloride
and Hunig’s base to give a quantitative yield of the required
polymer bound intermediate.24 A facile synthesis of chloro-
methyl substituted cinnamyl derivatives has been reported
(Scheme 11).25 The reaction did not produce the expected
mesylated product, and presumably proceeds via an SN29
pathway. The conversion of thiols and disulfides to chlorides
has also been described.26 The direct conversion of silyl ethers
to the corresponding bromides has been shown to occur with
inversion of configuration.27 Perciás and co-workers selectively
transformed the alcohol 4 to the iodide during the enantio-
selective construction of angularly fused triquinanes (Scheme
12).28 The use of α-halo enolates as nucleophiles has pro-
vided routes to substituted amides and lactones. Myers and
co-workers have outlined a practical methodology for the
asymmetric synthesis of organofluorine compounds from the
corresponding amide (Scheme 13).29 A stereoselective synthesis
of α-fluoroamides using a germyl anion species has been
reported,30 and α-chloro-β-lactones have been prepared by an
aldol reaction with lithium ester enolates derived from chlorin-
ated phenyl alkanoates (Scheme 14).31

2.3 By electrophilic substitution

Enders and co-workers have devised a regio- and enantio-
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selective synthesis of α-fluoro ketones by electrophilic fluorin-
ation of α-silylketone enolates with N-fluorobenzosulfon-
amide (Scheme 15).32 A new versatile chiral derivatising
reagent, α-cyano-α-fluoro-p-tolylacetic acid (CFTA) has been
reported.33 Amin et al. have synthesised the fluorinated natural
product (2S,3S)-4-fluorothreonine.34 The highly stereoselective
synthesis incorporates the fluoride using an acid chloride as an
electrophilic quench (Scheme 16). Hoffman and Tao have
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synthesised monofluorinated amides for use as dipeptide
isosteres.35 A synthesis of 29-fluoro substituted carbovir
has been reported,36 as has a highly selective synthesis of
α-monofluoro and chlorobenzylphosphonates.37 Enders has
also reported an asymmetric synthesis of α-iodo ketones using
iodotrifluoromethane as the electrophilic quench (Scheme 17).38

2.4 By other methods

Marquez has described a new synthetic approach to clinically
useful anti-HIV active nucleosides (Scheme 18).39 The 29β-
fluoro substituent was introduced via inversion of the readily
available 29α-fluoro isomer. Bravo and co-workers have
reported the stereoselective synthesis of the antibacterial
3-fluoro--alanine.40 An enantiomeric synthesis of 3-fluoro-
apionucleosides has been reported.41 The [3,3] sigmatropic
rearrangement proceeds in good yield and with enantiomeric
excess (Scheme 19). Funabiki et al. have provided the first effi-
cient and convenient access to α-fluoro-β,β-dialkoxy ketones.42

Two routes to α-fluoro ketones from β-keto esters have been
reported.43,44 Both incorporate the fluoride into the activated
methylene position of the β-keto ester, and perform a decarb-
oxylation to produce the desired products. Nickel powder
has been used to mediate radical cyclisation routes to β- and
γ-lactones 45 including a concise construction of the mesem-
brine skeleton (Scheme 20). Similar chemistry has also been
reported using tributyltin hydride and triethylborane, although
alternative products were found depending on the reaction
conditions (Scheme 21).46 Chloro substituted cyclopropanes
have been accessed by an electroreductive coupling of activated
olefins with gem-polyhalide compounds.47 Garg and Lee have
found a regioselective method for the bromomethylation of 1,2-
dialkybenzenes (Scheme 22).48 Precursors of novel amino acids
have been prepared by the asymmetric synthesis of (2S)-ω-
bromo-azido acids.49 A samarium diiodide promoted diio-
domethylation of carbonyl compounds has been reported.50

When treated with base, the products can be transformed into
α-iodo aldehydes (Scheme 23). Treatment of 1,1-diallyl-2-
amino alcohols with iodine has led to a synthesis of optically
active pyrrolidines (Scheme 24).51

3 Vinyl halides

3.1 From alkynes

A few notable preparations of vinylic iodides from alkynes have
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appeared this year. White and co-workers employed a stannyl
cuprate addition to a triple bond, followed by iodine quench on
the way to a total synthesis of the macrolide antitumour agent
rhizoxin (Scheme 25).52 The use of transition metals to perform
coupling reactions across alkynes continues to be of prime
importance. Takahashi has used a zirconium mediated alkyne
coupling protocol and then performed two more reactions on
the intermediate (Scheme 26).53 The initial zirconacycle, made
from the corresponding alkyne, was reacted with iodobenzene
then quenched with iodine to yield a diene. The nickel catalysed
carbozincation of alkynes has been combined with an iodine
work-up to provide access to vinylic iodides (Scheme 27).54

Transition metals are normally employed to prevent pro-
pargylic (prop-2-ynylic) halides isomerising to the correspond-
ing allenes. However, this transformation has been put to good
use for the preparation of 2-iodobuta-1,3-diene derivatives
(Scheme 28).55 Reaction of the propargylic bromide with the
Grignard reagent gave the allene which was reacted with iodine
to produce the desired compounds.
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3.2 From other vinyl derivatives

A synthesis of (fluorovinyl)trimethylsilanes from the electro-
chemical silylation of fluoroalkenes has been reported.56 Two
related papers have published routes to fluoro-substituted
alkenes and dienes from a palladium coupling reaction of vinyl-
stannanes. A palladium and copper halide co-catalysed stereo-
specific coupling of 1-fluorovinylstannanes with aryl iodides or
acyl chlorides gave tetra-substituted fluoroalkenes.57 On a simi-
lar note, the same catalyst combination has been employed to
produce difluoro substituted dienes.58 Okuyama et al. have
reported what they term a vinylic SN2 reaction of dec-1-
enyliodonium salts with halide ions to produce haloalkenes
(Scheme 29).59

3.3 By C]]C bond formation

The synthesis and desaturation of monofluorinated fatty
acids has been reported.60 Halogenated Horner–Wadsworth–
Emmons reagents have been utilised to form fluoroalkenes. The
synthesis of fluoro substituted purine nucleosides (Scheme
30) 61 and inhibitors of lignin polymerisation (Scheme 31) 62

have both been achieved in this way. On a similar note, an effi-
cient synthesis of fluoro derivatives of diphosphonates, and
their reaction with aldehydes to give vinyl phosphonates has
been reported.63 Reaction of β-fluorovinamidinium salts with
activated methylene compounds has been studied.64 The pro-
duction of functionalised alkenes, and in particular, bromo
derivatives, has been achieved by elimination over solid sup-
ports under microwave irradiation.65

3.4 By other methods

The reactions and kinetics of benzylfluorocarbene have been
assessed and used to provide routes to vinyl fluorides.66 The
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synthesis of 2-fluorinated indoles and related compounds
has been achieved via a 5-endo-trig cyclisation (Scheme 32).67

The reaction of Grignard reagents with propenyl toluene-p-
sulfonates has provided routes to α-fluoro-α,β-unsaturated
aldehydes in a highly efficient and stereoselective manner
(Scheme 33).68 The use of allenes to access vinyl halides has
been notable this year. Jonasson and Bäckvall have introduced
a palladium catalysed intramolecular 1,2 oxidation of allenes 69

(Scheme 34) and Zhang and Lu have highlighted a convenient
synthesis of iodo substituted homoallylic alcohols 70 (Scheme
35). As a key step towards bridge-methylated decalins,
Janda and co-workers have utilised a phosphorus tribromide
mediated SN29 bromination of an allylic alcohol (Scheme 36).71

Finally, two α-iodinations of carbonyl compounds: reaction of
enaminones with bis(pyridine)iodinium tetrafluoroborate has
been reported 72 as has the functionalisation of ketones with
iodine mediated with bis(tetrabutylamine) peroxydisulfate.73

4 Aryl halides

Electrophilic fluorination of fluoroaromatics has been reported
to proceed using trifluoromethanesulfonic acid and trichloro-
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fluoromethane as the solvent (Scheme 37).74 Fluorinated quin-
olines have been prepared and functionalised by reaction with
organolithium reagents.75 Fluoro-substituted O-glucuronides
have been synthesised and their intrinsic and intramolecular
lipophilicity effects studied.76 A mild preparation of halo-
arenes has been published which involves ipso substitution of
arylboronic acids with N-halosuccinimides (Scheme 38).77

Dibromothiophene has been synthesised via an exclusive cis-
1,4-addition reaction.78 Bromination of 2,5-bis(trimethylsilyl)-
thiophene monoxide proceeds as laid out in Scheme 39. By
supporting zinc bromide on a solid, a fast and selective
bromination of aromatic substrates has been achieved.79 Direct
bromination and halogen exchange reactions on phenan-
throlines have been reported giving access to symmetrical and
unsymmetrical dihalo derivatives (Scheme 40).80 Site selective
substitution of 2-chloro-6-trifluoromethylpyridine has been
termed a “halogenshuffle” by Schlosser and co-workers.81

Effective iodination of aromatic compounds has been achieved
by simple means in the last year. A room temperature regio-
selective iodination of aromatic ethers mediated by Select-
Fluor has been reported,82 as has an efficient regioselective
direct iodination using iodine and nitrogen dioxide.83

5 1,1-Dihalo and related compounds

The preparation of dihalo compounds has seen significant pro-
gress in the past year, particularly gem-difluorides. Of interest
for biological testing are the preparation of α-methylene-
γ-butyrolactones with difluoromethylene functionalities, 5,84

6-deoxy-6,6-difluoroglucopyranosides, 6,85 and fluorinated
derivatives of ornithine, 7.86 Fleming has reported a procedure
to obtain gem-α-difluorides from trifluoromethylated ketones
(Scheme 41).87 Using phenyldimethylsilyllithium the intermedi-
ate enol is trapped. This can then be used in aldol reactions, or
simply quenched to give the desired product. A similar reductive
defluorination has been achieved by electrochemical means, to

Scheme 35
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produce difluorinated silyl enol ethers in good yield.88 Xu and
Dolbier have used 1,1-bis(dimethylamino)-2,2-difluoro ethene
to produce gem-difluoro amides (Scheme 42).89 This reagent
adds in a Michael fashion to α,β-unsaturated aldehydes,
ketones and esters. The same reagent has also been applied to
the synthesis of novel fluorinated derivatives of barbituric acid
by a hetero Diels–Alder reaction (Scheme 43).90 Fluorinated
enamines have also been made by electrochemical means, then
used to give difluorinated organic compounds in good yield.91

Trimethylsilyl ketones have also been used to provide access to
gem-difluorinated ketones (Scheme 44).92 The Diels–Alder
reactivity of difluoroalkene dienophiles has been assessed by
Percy and co-workers (Scheme 45).93 The preparation of dif-
luoro ketones and related compounds has seen increased use
through carbon–carbon bond formation on the fluorine substi-
tuted α-carbon. Weigel has published a route to α,α-difluoro
hydroxy thioesters through enolization of the precursor
thioester (Scheme 46).94 In a similar manner, a magnesium
promoted synthesis of homoallylic alcohols from allylic
gem-difluorides has been noted.95 The same bond construc-
tion, but using radical assembly has also been employed. Gen-
eration and intramolecular cyclisation of difluoroalkyl radicals
via single electron transfer from a benzeneselenolate anion has
led to the synthesis of difluoro-γ-lactones (Scheme 47).96 Both
enantiomers of α,α-difluoro alanolide have been synthesised by
a similar route, but using tributyltin as the radical initiator.97

The generation and reactions of difluorocyclopropyl anion
have been the subject of interest.98 Reaction of cyclic alkenes
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with p-iodotoluene difluoride has been shown to result in a
ring contraction (Scheme 48).99 A new expedient route to the
stereoselective synthesis of fluorinated diol derivatives via
aluminium acetals has been published.100 The use of DAST to
transform ketones to their difluoro derivatives continues to be
of synthetic value. The potentially sensitive ketal functional
group was not affected during the transformation laid out in
Scheme 49.101 A similar reaction was performed during the
synthesis of gemcitabine (Scheme 50).102 Synthetically useful
difluorophosphonates have been prepared by electrophilic
fluorination of α-carbanions of benzylic phosphonates with
N-fluorobenzenesulfonamide.103 Two routes to 1,1-difluoro-
alkenes have been reported this year. Michael addition to allylic
fluorides proceeded with loss of a bromide to give the desired
products (Scheme 51).104 An alternative approach is outlined in
Scheme 52. Fluoride elimination from a β-anionic intermediate
was used in the synthesis of a cannabinoid ligand.105 Difluoro-
styrene derivatives have been synthesised by coupling of
2,2-difluoro-1-iodoethene with appropriate benzenoid com-
pounds.106 A similar coupling approach has also resulted in the
production of iododifluorostyrenes.107 A convenient synthesis
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of a series of 3,3-dichloroazetidines has been published
(Scheme 53).108 Dichloroalkenes have been prepared by a
Ramberg–Bäcklund rearrangement of trichlorosulfones.109 The
chiral building block (S)-β-chlorodifluoromethyl-β-propio-
lactone has been prepared by a [2 1 2] cycloaddition process
(Scheme 54).110 Dichloro substituted spirolactams have been
synthesised by a novel ipso radical cyclisation which results in
loss of aromaticity from the cyclising group (Scheme 55).111 The
deacetylation of dibromoacetoacetates with lithium percholate
has produced a route to bromo substituted esters.112 Quayle and
co-workers have continued their investigation into bis-stannyl
ethenes.113 Reaction with tetra-n-butylammonium tribromide
(TBATB) gives the corresponding bromo derivatives (Scheme
56). Treatment of dichloroalkenes with MCPBA results in the
oxidative incorporation of chloride (Scheme 57). This has been
used in a short synthesis of α-azido ulosonic esters.114 Finally,
the electrolytic partial fluorination of oxoindole and benzo-
thiazolyl sulfides has been the subject of some study.115,116
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6 1,2-Dihalo compounds and 1,2-halohydrins

The volume of work on 1,2-dihalo compounds and 1,2-
halohydrins warrants that these two sections are combined this
year. The difluorination of alkenes with iodotoluene difluoride
has been reported (Scheme 58).117 The stereocontrolled produc-
tion of a fluorohydrin has been shown from a novel nucleophilic
addition to fluorinated lactones (Scheme 59).118 Fluorinated
sugar analogues continue to be an area of interest. The asym-
metric synthesis of fluorinated pyranose derivatives has been
noted,119 as has an approach to fluorinated glycosides using
SelectFluor.120 The use of manganese chloride under an oxygen
atmosphere has been used to access dichloro compounds from
the corresponding alkenes.121 A selective syn or anti addition of
allyl nucleophiles to aldehydes has been achieved with pallad-
ium and tin organometallic reagents (Scheme 60).122 The use of
tetrabutylammonium salts determined the reversal of selec-
tivity. O’Neil and co-workers have used homochiral amine
N-oxides to induce asymmetric reduction of α-chloro ketones
to produce 1,2-chlorohydrins (Scheme 61).123 During the
enantiospecific synthesis of (1)-2-pupukeanone, a regio-
selective hydrobromination with NBS was employed (Scheme
62).124 A similar protocol has been used for the synthesis of
unsaturated oxaspiropentanes.125 Finally, Sweeney has used an
iterative hydroxyiodination of acetoxycyclohexenes to provide a
concise route to conduritol derivatives (Scheme 63).126
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7 Trifluoromethyl compounds

The use of the trifluoromethyl group in organic synthesis con-
tinues to grow. This section was added in last year’s review to
reflect this area of chemistry, and is maintained this year. It is
not an exhaustive account, but will highlight important
advances and methodologies which will be of interest to
organic chemists.

One important area which has seen some activity this year is
trifluoromethyl substituted amino acids. Stereochemically
defined α-alkyl-β-fluoroalkyl-β-amino acids, such as 8 have
been produced by biomimetic transaminations from the corre-
sponding β-keto esters.127 Asymmetric syntheses of hexafluoro-
valine, 9, and hexafluoroleucine, 10, have been reported.128,129

Of structural and reactivity interest, the stable enol 2,2-
bis(trifluoromethylthio)ethanol has been synthesised and
studied.130 The synthesis of new glycopeptide motifs has
been achieved by the glycosylation of 2-(trifluoromethyl)-
aspargine.131 Van Der Puy has prepared bis(trifluoromethyl)
substituted compounds via functionalisation of octafluoro-
pentane.132 The trifluoromethyl group has been used as a
sensitive NMR probe for remote diastereotopicity in second
generation trifluoromethyl substituted chiral dendrimers.133

The use of fluoroform as an efficient precursor for the tri-
fluoromethylation of aldehydes has been reported (Scheme
64).134 Reaction with dimethylsulfonium anion produces the
trifluoromethyl anion which reacts with carbonyl compounds.
The use of microbial or enzymatic methodology and the influ-
ence of substituents continues to be an area of interest. Two
papers have reported on the relative abilities of methyl and tri-
fluoromethyl groups to direct an enantioselective reduction of
carbonyl groups.135,136 A one pot preparation of trifluoromethyl
amides from ketones by reaction with (trifluoromethyl)-
trimethylsilane has been noted (Scheme 65).137 An efficient syn-
thesis of heteroaryl substituted α,β-unsaturated trifluoromethyl
ketones has been reported (Scheme 66).138 Initial Michael addi-
tion is followed by loss of the phenylsulfonyl group to reform
the unsaturation. The chemoselective trifluoromethylation of
methyl esters using germanium organometallic reagents has
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been used to provide an efficient synthesis of trifluoromethyl
ketones (Scheme 67).139 A similar overall transformation has
also been achieved with (trifluoromethyl)trimethylsilane and
TBAF (Scheme 68).140 The preparation of 3,3,3-trifluoro-
propiondithioacetals as CF3-containing building blocks has
been reported.141 The asymmetric synthesis of substituted tri-
fluoroethylamines has been achieved through a stereospecific
reduction of fluoral derived oxazolidines (Scheme 69).142 An
efficient preparation of trifluoromethyl substituted aryl acro-
leins has been presented.143 A concise stereoselective synthesis
of fluoro substituted alkyl amines has been achieved via the
addition of N-lithiated amines to enol ethers followed by sub-
sequent metalation and quenching with an aldehyde to
form new functionalised enamines (Scheme 70).144 The same
group have also reported on a stereoselective route to hindered
β-ethoxy allylic alcohols and crotonates using trifluoromethyl
ethoxy vinyl anions.145 Trifluoromethyl substituted olefins have
been accessed by a palladium mediated coupling with terminal
alkynes.146 Highly stereoselective SN29 reactions of Grignard
reagents have been examined based on attack on trifluoro-
methyl allylic acetates (Scheme 71).147 Novel reactions of allylic
alcohols with hexafluoropropene–diethylamine adduct lead to a
trifluoro substituted amide species which could be elaborated to
a γ-lactone via a [3,3] sigmatropic rearrangement (Scheme
72).148 Hiraoka et al. have reported a highly regio- and stereo-
selective alkyl substitution with copper reagents for the con-
struction of chiral trifluoromethyl quaternary carbon centres.149

A [2 1 2] cycloaddition has been utilised in the diastereo-
selective preparation of β-lactams (Scheme 73).150 A new
convenient route for the trifluoromethylation of steroidal
molecules has been published.151 Lewis acid promoted cross
coupling of trifluoromethyl acetals with trimethylsilyl enol
ethers has been used to give appropriately substituted fluorine
compounds.151 The synthesis of optically active trifluoromethyl
substituted aziridines has been achieved via an intramolecular
SN2 reaction as laid out in Scheme 74.153 A novel preparation
of trifluoromethyl substituted isoserine derivatives has also
been reported,154 as has the synthesis of a pyroglutamic acid.155

Okadu et al. have achieved a convenient synthesis of a fluorine
containing azepine by a thermally induced cyclisation reaction
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(Scheme 75).156 A study of the flash vacuum pyrolysis of tri-
fluoromethyl substituted diazomethanes, has been published.157

An anomalous Dakin–West reaction has been used to prepare
trifluoroacetyl substituted pyrrolidine compounds (Scheme
76).158 By using sequential Wittig and Heck reactions, Latham
and Stanforth have achieved an efficient synthesis of indoles
and quinolines (Scheme 77).159 Another convenient preparation
of fluoro substituted quinolines has been highlighted.160 The
optical resolution and asymmetric synthesis of a trifluoro-
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methyl substituted pyrrole derivative has been reported.161 The
preparation of trifluoromethyl substituted pyridines has been
the subject of some interest this year. A convenient synthesis of
6-substituted pyridines has been reported (Scheme 78).162 Two
related preparations of similar compounds are also noted by
Okada et al.163 and the 4-substituted compounds have been
noted by Katsuyama et al.164 Finally, trifluoromethyl substi-
tuted pyrazole and triazine compounds have been prepared by
regioselective reaction of oxazolium anions.165
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